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Indefinite Mean-Field Stochastic Linear-Quadratic
Optimal Control: From Finite Horizon to
Infinite Horizon

Yuan-Hua Ni, Xun Li, and Ji-Feng Zhang, Fellow, IEEE

Abstract—In this paper, the finite-horizon and the infinite-
horizon indefinite mean-field stochastic linear-quadratic optimal
control problems are studied. Firstly, the open-loop optimal con-
trol and the closed-loop optimal strategy for the finite-horizon
problem are introduced, and their characterizations, difference
and relationship are thoroughly investigated. The open-loop
optimal control can be defined for a fixed initial state, whose
existence is characterized via the solvability of a linear mean-field
forward-backward stochastic difference equation with stationary
conditions and a convexity condition. On the other hand, the exis-
tence of a closed-loop optimal strategy is shown to be equivalent to
any one of the following conditions: the solvability of a couple of
generalized difference Riccati equations, the finiteness of the value
function for all the initial pairs, and the existence of the open-loop
optimal control for all the initial pairs. It is then proved that the
solution of the generalized difference Riccati equations converges
to a solution of a couple of generalized algebraic Riccati equations.
By studying another generalized algebraic Riccati equation, the
existence of the maximal solution of the original ones is obtained
together with the fact that the stabilizing solution is the maximal
solution. Finally, we show that the maximal solution is employed
to express the optimal value of the infinite-horizon indefinite
mean-field linear-quadratic optimal control. Furthermore, for the
question whether the maximal solution is the stabilizing solution,
the necessary and the sufficient conditions are presented for
several cases.

Index Terms—Indefinite linear-quadratic optimal control,
mean-field theory, stochastic system.

I. INTRODUCTION

N THIS paper, a kind of discrete-time stochastic linear-
quadratic (LQ) optimal control of mean-field type is in-
vestigated. Compared with the classical stochastic LQ optimal
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control, an important feature of the problem is that both the
objective functional and the dynamics involve the states and the
controls as well as their expected values. In this case, the system
equation is a discrete-time stochastic difference equation (SDE)
of McKean-Vlasov type, which is also referred as the mean-
field SDE (MF-SDE). As a feature of such a class of SDEs, the
dynamics depend on the statistical distribution of the solution,
which provides simple but effective techniques for studying
large systems by reducing their dimension and complexity. This
new feature roots itself in the category of the mean-field theory,
which is developed to study the collective behaviors resulting
from individuals’ mutual interactions in various physical and
sociological dynamical systems. According to the mean-field
theory, the interactions among agents are modeled by a mean-
field term. When the number of individuals goes to infinity, the
mean-field term approaches the expected value.

The past few years have witnessed many successful ap-
plications of the mean-field formulation in various fields of
engineering, games, finance and economics; and the mean-field
control theory has attracted much attention from the mathemat-
ics and control communities. The investigation of continuous-
time mean-field stochastic differential equations can be traced
back to the 1960s [32]. In [3], to cope with the possible time-
inconsistency of the optimal control, an extended version of
dynamic programming principle is derived by using the Nisio
nonlinear operator semigroup. Recently, stochastic maximum
principles of mean-field type are extensively studied in several
works [2], [22], [30], and [41], which specify the necessary
conditions for the optimality. The results range from the case of
a convex action space to the case of a general action space. As
applications, the Markowitz mean-variance portfolio selection
and a class of mean-field LQ problems are studied in [2]
and [30] by using the stochastic maximum principle. In [41],
the stochastic maximum principle under partial information is
investigated, while [22] presents the maximum principle for the
controlled mean-field forward-backward stochastic differential
equations with Poisson jumps. In [43], the definite mean-field
LQ control with a finite time horizon is systemically studied
by using a variational method and a decoupling technique. It
is shown that the optimal control is of linear feedback form
and that the gains are represented by the solutions of two
coupled differential Riccati equations. In [20], the discrete-time
definite mean-field LQ problem is formulated as an operator
stochastic LQ optimal control problem. By the kernel-range
decomposition representation of the expectation operator and
its pseudo-inverse, an optimal control is obtained based on the
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solutions of two Riccati difference equations. Furthermore, the
closed-loop formulation is also investigated. Later, [23] and
[33] generalize results in [20] and [43] to the case with an
infinite time horizon.

As pointed out above, the mean-field stochastic differen-
tial equations were first studied in 1960s. A recent study
on controlled mean-field stochastic differential and difference
equations is partially relighted by a surge of interest in mean-
field games (see [10]-{15], [24]{26], [28], [31], [38], and [40]).
Compared with the topic of this paper, mean-field games use
decentralized controls, that is, the controls are selected to
achieve each individual’s own goal by using local information.
In [24]-{26], Huang, Caines and Malhame investigate large
population stochastic dynamical games with mean-field terms.
Independently, Lasry and Lions [28] introduce similar prob-
lems from the viewpoint of the mean-field theory. Now both
the Huang-Caines-Malhame and the Lasry-Lions formulations
are termed as mean-field games. Subsequently, for the large
population multi-agent systems, [31] and [40] deal with the
asymptotically optimal decentralized control problem and the
problem with Markov jump parameters, respectively. In [10]
and [11], LQ N-person games and mean-field games with er-
godic costs are intensively explored via studying the Hamilton-
Jacobi-Bellman and Kolmogorov-Fokker-Planck (HJB-KFP)
equations; the contents range from the existence of affine Nash
equilibria of the LQ N-person game, the asymptotical property
of the HIB-KFP equations, and examples with explicit solu-
tions. Risk-sensitive mean-field games are firstly formulated in
[38] together with several interesting aspects: the equation that
the mean-field value satisfies, an explicit solution of the mean-
field best response and an equivalent mean-field risk-neutral
formulation. In [13], LQ mean-field games are investigated via
the adjoint equation approach; several sufficient conditions are
presented to ensure the existence and uniqueness of equilibrium
strategy. Interestingly, a mean-field LQ optimal control with fi-
nite horizon is also studied using the same approach. Concerned
with the difference between mean-field games and mean-field
optimal control, “mean field games can be reduced to a standard
control problem and an equilibrium, and mean field type control
is a nonstandard control problem” [12]. We can refer to [12],
[14], [15] and other related works for more extensive contents
of the backgrounds, results, methodologies and more advanced
questions of these two classes of mean-field type problems.

Mean-field stochastic LQ optimal control with indefinite cost
weighting matrices is studied in this paper, which is referred
as the indefinite mean-field stochastic LQ optimal control.
Indefinite stochastic LQ optimal control without mean-field
terms was first studied at the end of last century. It is found
that an indefinite stochastic LQ problem may still be well-
posed, which challenges the standard belief about LQ problems
[4]-{7]. It is further shown that the indefinite stochastic LQ
problems are closely related to Markowitz’s mean-variance
portfolio selection problems in financial investment [29], [45].
As pointed out in [29] and [45], when the expectations of
state and control appear nonlinearly in the cost functional,
the corresponding problems are nonseparable in the sense that
the standard dynamic-programming-based methodology fails
to work. In [34], for an inhomogeneous version of Problem

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 11, NOVEMBER 2016

(MF-LQ) with Ly, L, = 0,k € T (see in Section II), the au-
thors propose a modified backward recursive technique, and get
around the nonseparability using the method of completing the
square. Moreover, it is shown that the well-posedness and the
solvability of the mean-field LQ problem are both equivalent
to the solvability of a couple of generalized difference Riccati
equations (GDRESs) and a constrained linear recursive equation.
As an application, the multi-period mean-variance portfolio
selection is well studied, and the obtained results extend those
in [29] to the case that the return rates of the risky securities are
possibly degenerate.

In this paper, we shall investigate both the finite-horizon and
the infinite-horizon indefinite mean-field stochastic LQ optimal
control problems. For the finite-horizon poblem, we give a more
detailed and deeper investigation than that in [34]. Specifically,
we introduce the open-loop optimal control and the closed-
loop optimal strategy, and investigate their characterizations,
difference and relationship. The open-loop optimal control
can be defined for a fixed initial state, whose existence is
characterized via the solvability of a linear mean-field forward-
backward stochastic difference equation (MF-FBSDE) with
stationary conditions and a convexity condition. Note that the
open-loop optimal control may depend on the initial state. In
contrast to this, the closed-loop optimal strategy is required to
be independent of all the initial pairs. It is then shown that the
existence of the closed-loop optimal strategy is equivalent to
the solvability of a couple of GDRE:zs, the finiteness of the value
function for all the initial pairs, and the existence of the open-
loop optimal control for all the initial pairs.

To study the infinite-horizon mean-field LQ optimal control,
we first review the properties of the stability of the
MF-SDEs and introduce a couple of generalized algebraic
Riccati equations (GAREs). To study the GAREs, we construct
another GARE, by which we easily obtain the existence and
the properties of the maximal solution of the original GAREs.
It is then shown that the maximal solution to the GAREs is
employed to express the optimal value of the infinite-horizon
mean-field LQ optimal control. Finally, the problem “when is
the maximal solution of the GAREs a stabilizing solution?”
is partially addressed. This relates to an open problem raised
by the seminal work [42] of finding an optimal control by the
primal-dual semidefinite programming (SDP) technique.

As mentioned above, the discrete-time linear MF-FBSDEs
are introduced in this paper. Compared with the continuous-
time backward stochastic differential equations and forward-
backward stochastic differential equations, the discrete-time
case has more compact forms and are easier to validate the
well-posedness of the existence of the solutions. Concerned
with the differences, we consider the infinite-horizon backward
stochastic difference and differential equations. The infinite-
horizon backward differential equations (without mean-field
terms) are intensively studied in [35] and [37]; it is shown
that the L2-stable solution exists under mild conditions. To
the best of our knowledge, there are some difficulties to estab-
lish similar results for the infinite-horizon backward stochastic
difference equations. Unlike the Brownian motion that drives
the continuous-time backward differential equations in [35]
and [37], the noise {wy} in this paper is assumed to be any
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martingale difference with properties (2) given below.
Generally speaking, the process {vy, = Zf:o w } does not have
the so-called martingale characterization, as the one for the
Brownian motion. Due to this fact, in the study of the infinite-
horizon mean-field LQ optimal control we do not touch the
infinite-horizon discrete-time MF-FBSDEs, which will be left
for future research.

The remainder of this paper is organized as follows.
Sections II and III deal with the finite-horizon and the
infinite-horizon mean-field LQ optimal control, respectively. In
Section IV, several examples are presented. Section V gives
some concluding remarks.

II. INDEFINITE MEAN-FIELD STOCHASTIC LQ OPTIMAL
CONTROL OVER A FINITE HORIZON

A. Open-Loop Optimal Control

Consider the following dynamic system:

Try1 = (Arzy + AgExy + Bruy + BiEuy)
+ (Crap + CrExy + Dyuy + DyEug)wy (D
xo=CkeT

where Ak,/_lk, Chk, Ck € R™" and By, Bk, Dy, Dk e Rxm
are given deterministic matrices; T denotes the set
{0,1,...,N —1}. In (1), {zp,k €T}, {up,k €T} and
{wg,k € T} are the state, control and disturbance process,
respectively, with T = {0, 1,..., N'}; {wy} is assumed to be a
martingale difference sequence defined on a probability space
(Q,F,P),and

Elwi1]Fi] = 0, B [(wp41)?|Fe] =1 2
with Fj being the o-algebra generated by {zg,w;,l=
0,1,...,k}. For convenience, F_; denotes o(xo). The initial
value ( is assumed to be square integrable. The cost functional
associated with (1) is

-1

N
J(Gu) = > E[af Qua + (Bax)" QuBay, + 22 Lyuy,
K
+
+

0
Q(Exk)TEkEuk + ukauk + (Euk)TRkEuk]
E ((E%GNQ:N) + (E:L’N)TGNE{EN 3

where Qr, Qk € R™" Ry, Rk e R™*™ L, I_/k € Rxm™,
k€T, Gy,Gy € R™™ are deterministic symmetric matrices
of appropriate dimensions.

Forany ¢ € T, denote {¢,...,N — 1} and {¢,..., N} by T,
and T, respectively. Clearly, T = T, Ty = T. Let L%(Ty;H)
be the set of H-valued processes v = {vy, k € T} such that
vy is Fj_1-measurable and Ziv;tl E|v|? < co. In addition,
LZ%(t;H) is the set of random variables ¢ such that £ € H
is F;_1-measurable and E|¢|* < oo. Let Xy = {¢|¢ is F_1 —
measurable and square integrable}, which denotes the set of all
the initial states. Then the optimal control over T is stated as
follows.
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Problem (MF-LQ). Given ¢ € Xj, find a u* € L%(T;R™)

such that
J(Gu) = ueL%;Rm) J(Gu). )

For any admissible control v € L%(T; R™), the requirement
that uy is Fj_1-measurable is parallel to the standard state-
ment on the admissible controls of continuous-time stochastic
optimal control; see [21] and [44] for details. Furthermore, by
known result of probability theory, there exists a measurable
function fj such that ug = fx(xo,wo,...,wg—_1). In other
words, uy is determined from {k,xo,wo,..., w1} only,
irrespective of how the state process = of (1) develops. From
this and the standard arguments about the open-loop control [9],
any u in L%(T; R™) can be viewed as an open-loop control. We
then call u* satisfying (4) an open-loop optimal control for the
initial state (. Here, the “open-loop optimal” is due to the fact
that we minimize .J((; u) over L%(T; R™).

Introduce an inner product in L%(T; RP) (p = n,m)

N-1 T
()= () 4)
k=0
for yM,y@ e LZ(T;RR?), and use the convention
(Qz)(-) = Q.x., Vaxe LI(T;R")
(Qe)() =Qp., Vo =I(po,--.,oN-1)
N-1
with 5 € R" such that > |¢x]? < oo
k=0
(LTz)(-) = LTz,
(LT¢)(-) = LT,

N-1
with ¢, € R™ such that 3" |p|? < o0
k=0

Vo € L%(T;R")
Vo= (po,...,on-1)

(Ru)(-) = Ru., Yu€ L%(T;R™)
(Rw)() :Rwa sz (w077w1\/'—1) Wlthwk e R™

N-1
such that Y |¢x]? < o0
k=0

(Ev)(-) = Ev.,v € L%(T; RP).
For L%(N — 1;RP) (p = n, m), an inner product is defined as
<y(1>, y(2)> =E (y<1)Ty(2>) oy y® e LRV - LRP).
The cost functional J(¢; u) is then represented as
J(Gu) = (Qx, )+ (QEx, Ex)+ 2(LT x, u)+ 2(L" Ex, Eu)
+ (Ru, u) + (REu, Eu) + (Gxn, zN)
+ (GExyn,Exn). 3)
Fixing ¢, J((;u) is a quadratic functional of u, and x is the
internal state, which is induced by ¢ and .
In what follows, we shall calculate the first order and second
order directional derivatives (when they exist), and intend to
characterize the existence of the optimal control via the two

derivatives. Denote by z* the solution to (1) with control u +
Au. Hence

TR —Thk A 7 Ez)-E _ 5o
bl Thtl [Ak x’“)\xk + Akixk)\ “E + Byl +BkEuk:|

)
A P A N
+ [Ck T 4 O ExkxExk + Dyt + DkEﬂk} W

ma —XTo __ 0
\ = U.
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As (23 —x0)/A =0, ((2341 — Tk+1)/A) is then independent
of u and A. For k €T, denote (3, — Tx4+1)/A by Yrt1,
which satisfies

Yk1 = [Aryr + AcEys, + Brty, + BrEug)
+ [Cryr + CrEyi, + Dity + DiEtg)wy (6)
=0, keT.

Clearly, for any k € T, it holds that x? = x} + Ayx. To obtain
the first order directional derivative, we need some prepara-
tions. Simple calculations show that
lim (R(u+ M), u + Aa) — (Ru, u)
AL0 A

= 2(Ru,u) + lA%l MRa,u) = 2(Ru, u).

Similarly, we have

RE ). E ) — RE E =
m< (u+ Aa),E(u + Aa)) — (REu, u>:2<REu,Ea>
A0 A
. <Q$/\,$A> — <Qx,x> —
l){g)l 5y _2<Qa:,y>
. (QEz* Ea*) — (QEx,Ex) -
1&?8 . = 2(QEz, Ey)
LT~ (L) o g
%1 : = (LT, a) + (L%y, u)
ITE: . E i) — (LTEz, E 7
g (LB E(u 4 M) — (LB Bu) _ g
A0 A
+ (L"Ey, Eu).

Therefore, the first order directional derivative with the direc-
tion @ is given by
_ . J(Gu+Aa) — J(Cu)
dJ (G5 u; @) = lim 3
= 2(Qz,y) +2(QEx, Ey) +2(L 2, u) +2(L Ty, u)
+ 2(LTEx, Ea) + 2(LTEy, Bu) + 2(Ru, u)
+ 2(REu, Ea)+2(Gzn, yn) +2(GEzy, Eyn).
Similarly, we can derive the second order directional derivative
with the directions % and @

2T (C;us w3 1)
— lim dJ(C;u+ M @) — dJ(C u; )
A0 A
= 2(Q9, y)+2(QEg, Ey) + 2(L"y, u) + 2(L"y, @)
+ 2(L"Eg, Eu) + 2(L" Ey, Ed) 4 2(Ru, @)
+ 2(REu, Ea) + 2(Gyn, yn) + 2(GEjn, Eyn)
where
Je+1 = [Axdr + AcEgi + Briy, + BrEay]
+ [C}c@k + CkEQk + Dy, + DkEﬁk]w
7o = 0.
If 4. = u, then it holds that

2J(C u; w;w) = 2J(0; %) (7
which is independent of u and (. Furthermore, we can show
that J(C;u) is infinitely differentiable in the sense that the
directional derivatives of all orders exist.

By classical results on convex analysis [19], the convex-

ity of the map u+— J(C;u) can be fully characterized via

2J(¢; u; u; @), and we have the following result by combining
the property (7).
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Lemma 2.1: The following statements are equivalent.
(i) The map u +— J(0;u) is convex.

(ll) infuesz(T;]Rm) J(O, U) 2 0.

(iii) The map u — J({;u) is convex.

The following theorem gives several equivalent characteri-
zations on the existence of the open-loop optimal control of
Problem (MF-LQ).

Theorem 2.1: Given ( € X, the following statements are
equivalent.

(i) There exists an open-loop optimal control of Problem
(MF-LQ).
(ii) There exists a u* in L%(T; R™) such that
Va € L%(T;R™),dJ (¢ u'u) =0 ®)
and inf ¢ 2 (p.gmy J (05 u) > 0.
(iii) There exists a u* in L%(T;R™) such that the following
MF-FBSDE admits a solution (z, 2):
(Akxk + flkExk + Bkuz + BkEu}i)
+ (C’kxk + C_'kIEa:k + Dku}; + DkIEu};) w,
2k = AT E(zp41|Fr-1) + AT Ezjq
+ CZE(Zk+1wk|fk;71) + CkTE(zkHwk)
+ Qrar + QrExy + Liyuy + LiEuj,
o =C(,zy = Gy +GEzn, keT

Te+1 =

©)
with the following stationary conditions
0 = BFE(2k41|Fk-1) + Bf Ezg 41
+ D{E(zk41wi|Fr-1) + DEE(zp41wk)
+ Lgxk + EgExk + Rpuj, + RkEuz
kEeT.

(10)

Moreover, the following holds:

inf  J(0;u) > 0.
ueLZ (T;R™)

(1)
Under any of above conditions, u* is an optimal control and
the optimal value of Problem (MF-LQ) at ( is given by

V()= inf J(Gu) =E[x¢].

. (12)
weLZ (T;R™)

Proof:  Since J((;u) is infinitely differentiable with
respect to u and d?.J((;u;@;u) is independent of wu, the
minimizing point u* of J((;w) is characterized by the first
order and second order derivatives: dJ((;u*;a) =0 and

2J(¢;u;uy @) > 0 for any @ in L%(T; R™). Due to this and
Lemma 2.1, the equivalence between (i) and (ii) follows. We
now prove the equivalence between (ii) and (iii).
(iii)=> (ii). From (6), we have

Eyr+1 = (A + Ap)Eyx + (Bi + By)Eiy,
{Eyo —0,keT
— Eyr1 = [Ax(yx — Eyx) + By (ur — Eug)]
+ [Cr(yr — Eyi) + (Cx + Cr)Eyp
+ Dy (ux —Etig) + (Dy+ D) Eiig, | wy,
yo — Eyo =0,k € T.

Yk+1
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Furthermore, from (9), it holds that

2k — Bz = AL (E(2p41|Fr-1) — Ezpy1)
+ OF (E(zpr1wi| Fr-1) — E(zrg1wp))
+ Qi (zr — Bag)+ Ly (uj, — Euy)
keT

(13)
ZN—EZNZG(J?N—EJ)N),
Ezi, = (Ag + Ax)TEzjtq

+(Ck + ck)TE(Zk+1wk)

+(Qr + Qr)Exy, + (Li, + L)Eu;,
EZNZ(G—FG)EJ)N, keT.

(14)

Therefore, we have for any @ € L%(T; R™)

%dJ(C; u*; )

N-1
=) E {[Ak (E(
k=0
+ CF (B(zhprwi] Fro1) — E(zr1we))
+ Qr(x, — Eag) + Ly (uj,—EBuy) — (21, — Ezy)
’ (yk B Eyk’) + [Bl? (E(Zk’-‘rlu:k’—l) - Ezk.H)
+ Df (E(zk 41wk | Fie-1) — E(zrr1wr))
+ LF (21, — Bag) + Ry (uf — Buf)] " (g — Eﬂk)}

Zkt1 | Fr—1) — Ezgg1)

}T

+ Z {[(Ak + ) Ez41 — B2

(Ck + Cr) "E(zp1wy)
+ (Qr + Qr)Exi + (Li + Ek)EUZ]T Eyp
+ [(Br + Br)"Ezgy1 + (L + Li) "Ex
+ (Dg + Di)"E(z 41 wg)

(

+ (Re + Ri)Eu;] " By } (15)

Due to (10) and (13)—(15), we have

dJ(Gusa) =0, Vue LR(T;R™).

Therefore, (ii) holds.

(ii)= (iii)). Let uw* be the optimal control of Problem
(MF-LQ). Substituting this «* into (9), the MF-FBSDE (9) is
then a partially decoupled one, i.e., the backward state z does
not appear in the forward MF-SDE (equation for ). Therefore,
given (z,u*), the mean-field backward stochastic difference
equation (MF-BSDE)

2k = AgE(Zk_H |~7:k—1) + AzEzk_H
+ C]?E(Zk+1wk|fk,1) + CgE(Zk+1wk)
+ Qrxi + QkE{Ek + Lyuj, + EkEuz
ZNZGJ)N—FGEJ)N, keT

is well-defined. This means that the MF-FBSDE (9) admits a
solution (z,z). We then have the expressions (13) and (14),
which imply the desired result (15). As % can be arbitrarily
selected in L%(T; R™), (10) holds from (8) and (15).

Finally, similar to (15), we can get the result (12). This
completes the proof. (|
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= E[mf@kxk + (Exk)TQkEa:k + Ql‘nguk

+ Q(Exk)TEkEuk + qukuk + (Euk)TRkEuk}
+E (J)%GNJ?N) + (EJ)N)TGNEJ?N
where ¢ € T and i € L%(t;R™). We then state the following
problem.

Problem (MF-LQ);.
L% (Ty; R™) such that

Given f € L%(t;R™), find a u* €

J(t, hyu*) = inf

J(t, b u).
weLZ (T4;R™) (t, b )

When t = 0, Problem (MF-LQ) is a version of Problem
(MF-LQ). We then have the following corollary.

Corollary 2.1: Let Problem (MF-LQ) admit an open-loop
optimal control v* and (z(-; ¢, u*), z(+; {,u*)) be the solution
of the MF-FBSDE (9). Then for any ¢ € T, the optimal value
of Problem (MF-LQ); with the initial state x(¢; ¢, v") is finite,
and u*|r,, the restriction of u* on Ty, is the optimal control of
Problem (MF-LQ); for the initial state (¢; ¢, u*).

Proof: Tt holds that the restriction of (9) on T, admits
a solution with initial forward state x(¢; ¢, v*). Furthermore,
versions of (10) and (11) are satisfied. We thus achieve the
conclusions. O

B. Closed-Loop Optimal Strategy

We now introduce a type of closed-loop optimal strategy for
Problem (MF-LQ). This notion is motivated by those in [20]
and [36].

Definition 2.1: (i) Let u = {Kyxy, + KiExy, k € T} be a
control of (1) with K, Kj, € R™*" k € T, being deterministic
matrices. If K, Ky, k € T, are independent of all the initial
pairs (t,h), t € T,h € L%(t;R™), we then call (K,K)=
{(Kx,Kg), k € T} a closed-loop strategy of (1).

(ii) A closed-loop strategy (K*,K*) = {(K},K}),k € T}
of (1) with KZ,KZ e R™*™ k €T, is called a closed-loop
optimal strategy of Problem (MF-LQ) if

J (t, b (K*2* + K Ea*)|r,) < J(t, b u) (16)

holds for all ¢t € T, he€ L%(t;R") and u € L%(Ty;R™).
Here, K*2* + K*Ez* is understood as the control {Kjx} +
K;Ex},k € T} with 2* being the corresponding state of (1),
and (K*z* + K*Ez*)|r, is the restriction of K*z* + K*Ez*
on T;.

Remark 2.1: Note that the open-loop optimal control can be
defined for a given initial pair, which may be viewed as a local
property. In contrast to this, we shall refer to the property that
closed-loop strategies are independent of all the initial pairs as
being a global property. Furthermore, in Definition 2.1, (16)
holds for all the t € T and h € L?_—(t; R™), which is different
from that in [36] and [37]. This is because of the following fact.
If (16) holds at t = O for any h € L%(O; R™), we cannot assure
that (16) holds at any ¢ € Ty and any h € L%(¢; R™).
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Introduce a control u’ = {K*z;, + K*Exy, + vy, k € T}
with v € L%(T; R™), under which (1) becomes
Tpt1 = [(Ak + BiK})xk + Brok + BrEoy
+ (Ax + BrK; + Bi(Kj, + Kj))Exy]
+ [(Cr + DK}z + Dyvg + DiEuy,
+ (Cr+DiKj+ Di(K; +K;) ) Eay | wy
xo=C(,keT.

A7)

Furthermore, let
J(t, h;olr,) = J (t, h; (K*z + K*Ex + v)|r, )

where x is the state of (_17). Clearly, under the control u", the
state z of (17) is in L%(T; R™). Therefore, (16) is equivalent to
that

J(t,h:00,) < J(t,;lr,)

holds for any ¢t €T, he€ L%(t;R™) and v € L%(T;R™).
Therefore, O|r, is the optimal control of Problem (MF-LQ);.
Similar to the proof of Theorem 2.1, we can obtain the follow-
ing result.

Proposition 2.1: (K*,K*) is a closed-loop optimal strategy
of Problem (MF-LQ) if and only if for any t € T and h €
L% (t; R™) the following MF-FBSDE admits a solution (z, 2):

Tp1 = [(Ak + BiK}) 2
+ (e + By + By (K + K)) Ea)
+ [(Ck + DiK})
+(Cr+DiKj+ Dy, (Ki+Kj) ) Exy | wy

FANES AEE(Z}C+1|J_'.]€71) + AEEZ]CJFl (18)
+ CLE(zir1wg | Fr-1) + CF E(2g41wy,)
+(Qr + LK) oy,
+ (@ + LiK;, + Ly (K;, + K;)) B
xt:h,ZN:G$N+GE$N, IfETt
such that the following stationary conditions hold, a.s.,
0= (By + Bi) Ezg41 + (Di + Dy) TE(2p41ws,)
+ [(Lk + Lk)T =+ (Rk =+ Rk) (KZ + K;;)} Exy,
0= Bg (E(zr41]Fr-1) — Ezpq1) (19)

+ D (E(zps1wi| Fr-1) — E(zpr1wr))
+ (LY + RyK}) (zx — Exy,)
ke T,

and for any t € T, h € L%(t;R"), (K*,K*)|r, is required to
be independent of the initial pair (¢, %), and the following is
satisfied:

inf  J(0;K'z + K'Ez +v) > 0.
veLZ (T;R™)

Introduce a couple of GDREs
Py, = Qi+ AL Poyr Ap+CF Poyr G — HE W, H,,
Ty = Qr + Qk + (Ck + Cr) T Pry1 (Cr + C)

+ (Ag + AT Thop1 (Ag + Ay) — HE W, Hy,
Py =Gn,Tn =GN + Gy
Wi, Wi > 0, We W, Hy, — Hy, = 0
WiW/ Hy, — H, =0, keT

(20)
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where

Wi = Ry + Bl Pyy1Bi + Df Py Dy,

Hy = Bl Poy1 Ay + D Py O + LY

Wi = R + Ry + (Bi, + Bi) T Tyoi1 (B + By)
+ (D + Dy)" Pyy1(Dy, + Dy)

Hy = (Bi + Bi) " Tiy1 (Ar + Ay)
+ (Dk + Di)" Pey1 (Crp + Cr) + LT + LT

keT

21

and W,I, W,I denote the pseudo-inverses of Wj and Wi,
respectively. Note that Wy W,IH % — Hi =0 and W, W,IH’ K —
Hy =0 are required for any k£ € T. Then (20) is a set of
constrained equations. The GEREs (20) are called solvable if all
the constrained equations W, W, Hy, — Hy, = 0, W, W/ H), —
H;, =0, k € T, are satisfied.
Similar to [34, Corollary 4.1], we have the following result.
Lemma 2.2: Under the conditions that
[Qk Lk} >0 [Qk +Qr L+ Ly
Lg Ryl =7 Lz—l—Lz Ry + Ry
and Gy > 0,Gn + Gy > 0, the GDRESs (20) are solvable.
Denote Hy, Wy, H, and W; in (21) by, respectively,
Hy.(P,T),Wy(P,T), H,(P) and Wj(P) to emphasize the de-
pendence on (Pj41, Tk+1). Furthermore, let

>0,keT (22)

Je(P,T) = Q1 + Qx
+(Cx + Cjk)TPkJrl(Ck + Cjk) 23)
+(Ak 4+ Ap) T (Ak + Ay) — Ty,
Jk(P) = Qk + AszJAAk + CkTPkHCk — P
7 T
pr) - [BPT)HIPD)
k(Pv T) Wk(Pa T) (24)
| J(P)  HE(P)
Hi(P) =
Hi(P)  Wi(P)
MGN7GN o
HE(P,T)>0,Hi(P)>0,
=PI T) = (P, Tk) |k € T, Py < G, (25)

Tn < Gy + Gx.

We then have the following result, which gives several equiv-
alent characterizations on the existence of the closed-loop
optimal strategy.

Theorem 2.2: The following statements are equivalent.

(i) Problem (MF-LQ) admits a closed-loop optimal strategy.
(ii) The GDREs (20) are solvable.
(i) Mg, gy 7 9-
(iv) Foranyt € Tand h € L%(t;R™)

inf J(t, B u) > —o0.

(26)
ueL?(T,;R™)

(v) For any t € T and h € L%(t;R™), Problem (MF-LQ);
with the initial state & admits an open-loop optimal
control.

When any of the above statements is true, the LQ problem is
attained by

Up = —W;Hk(l’k — E{Ek) — W;HkEiL'k, keT 227)
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ie, {(~W\H,, Wl H, — W[ H),keT} is a closed-loop
optimal strategy. Moreover, the optimal value is

V() =E[(¢—E)"Py(¢ —EQ)] + (EQ)"ToE¢.  (28)

Proof: (1)=(ii). Let (K*,K*) be a closed-loop optimal
strategy of Problem (MF-LQ). From Proposition 2.1, for any
initial pair (¢, %), (18) admits a solution (x, z) and (19) holds.
Since the backward state z does not appear in the forward
equation, the solution of (18) is unique. Define a map I

x> ixy = 24

We know that I is linear and continuous. Noting that zy =
Gn(zny —Exn) + (Gn + GN)Exy, we let

2z = P (xk — Emk) + TpEx,, ke T (29)

with Py = GnN, Ty =GN + GN and Py, Ty, k €T, being
deterministic and determined below. From (18), it holds that

Ezgpyr = [(Ak + Ax)
+ (Bi + Bi) (K; + Kj)| Ex
Ezi, = (AL +AL) Ezpq 14 (Cr+Cr) TE (214101
+ [(Qk+Qr)+ (L +Li) (K +Kj) | Eay,
Exy = Eh, Ezy = (G + G)Exn

(30)

Th1 — Exppr = [(Ar + BiK}) (v — Exy)
+ {(Ck + DiK}) (zi — Eag) + [(Cr + Ch)
+ (Dx + Dy) (K, + Kj,)] Exp } wg

2z — Bz = Az (E(zg+1|Fk-1) — Ezg41)

+ CF (B(zpq1wi| Fe-1) — E(zr1wr))
+(Qk + LyK}) (z, — Eay,)

r; — Ex; = h — Eh,

€29

ZN — EZN = G(J?N — EJ,‘N).
We have from (19), (29), (30) and (31) that

Pi(xy — Exy) = 2 — Ez
= [(Q¢ + LiK}) + AT Py (Ar + BiK;)
+ CIPyq (Cy + DtKI)] (2 — Eay)
0= [Bf Pry1 (A + BiK;) + Df Pria
x (Cy + DiK;) + (LT + RK})] (2 — Eay)

(32)

T Ex; = Ez
= [(Qt + Qt) + (L + Et) (KI + KI)
+ AT + AD)T 1 (Ac+ Ay)
+ (AT + AT) To1 (B + By) (K +K;)
+ (Ce + C)TPyr (Cy + Cy)
+ (Cy + C)T Piyr (Dy + Dy)
x (K; + K3)] Ex,
0={(B:t+ B))TTy41(Ar + Ay) + (Ly + Ly)T
+ (D¢ + D) Py (Cy + Cy)
+ [(Bt + Bt)TTtJrl(Bt + Bt)
+ (Dy + D))" Piy1 (D + Dy)
 (Re + Ry)) (K; +K;) } Ear.

(33)
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Due to the definition of the closed-loop optimal strategy, ¢ and
h(= x;) can be arbitrarily selected. Combining this, (32) and
(33), we have

Py = Qr + Al Pey1 A + CF Poya Gy,
+ (AL Poy1Bi + CE Pyy1 Dy + Li) K,
0= ngk+1Ak + D,{P;Hl(]k + Lz
+ [Rk + Bi Piy1Bi + D} Pyy1 Di] K,
Py=G,keT

(34)

Te = Qi + Qr + (Ak + Ap) T Thgr (A + Ag)
+(C + Ci) T Pey1(Cr + Ci)
+ [(Ak 4+ Ap) T Ty y1 (By + By)
+(Ck + Ck)" Pey1 (D + Di) + Li + Ly |
x (K; +Kj)
0= (B + B) " Tit1(Ax + Ax) + (Li + L)
+(Di + Dy)" Pey1 (Cr + Ci)
+ [(Bk + B)" Trt1(Br + B)
+(Dx + Dy)" Pey1(Dy, + D) + (Ri + Ry)]
x (K; + Kj)
Tn = Gn + G,

keT.
(35)

From Lemma 3.1 of [4], (20) can be constructed by (34)
and (35).

(ii)=(iii). If the GDREs (20) have a solution {(Py, T%), k €
T} with Py = Gn,Tn = Gn + Gy, then by the Extended
Schur’s Lemma [8] we have

Hip(P,T) >0, Hi(P)>0. (36)

Hence, Mg, ay # 0.

(iii)=(ii). This part follows from a method of [S]. Suppose
Mey.an 7 0. Let {(Py, Ty), k € T} € Mg, &, and intro-
duce the following GDRE:s:

U = Jp(P) + AL U1 A + CL U1 Gy
—HWHy, ]
Vi = Jk(P,T) + (Ck + Ck)TUk+1(Ck + Ck)

+ (A + Ak)TVk+1(Ak + Ak) — ﬁg@gﬁk (37)
Uv =GN = PN, VN =GN+ Gy = TN
VNVk, Wi > O,WkVNVkTIjIk — I:[k =0
V_VkW]IHk—HkZO, keT
with
Wy, = Wi(P) + BYUy11By, + DY Uj 11Dy
Hy, = Hp(P) + Bl'Uyi1 A, + DI U1 Cre
Wi = Wi(P,T) + (Bi + Bi)" Vi1 (Bi + By) (38)

o+ (Dk + Dy)TUi11(Dy, + D)
Hy = Hy(P,T) + (Bi + Bi)" Viey1 (A + Ag)
+ (Di 4+ D) U1 (Cr 4+ Ck), keT.

Then, the GDREs (37) are versions of (20) with Q,
Qr + Qi, Li, Ly + Ly, R, Ry + Ry replaced by Ji(P),
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J(P,T), Hy(P), Hy(P,T), Wy(P), W)(P,T), respectively.
Since
Hi(P,T) 20, #Hi(P) >0,
Gy +Gn—Tn >0

the GDREs (37) are solvable by Lemma 2.2, and Uy, Vj, >
0,k € T. Letting P, = Uy, + Py, Tiy = Vi, + Ti,, k € T and by
simple calculations, we can get (P,T) which solves the
GDREs (20).

(iii))=(iv). Simple calculations show that

o= ] e[

k=0
+E <[if - giﬂ T H(P) Bi - %ﬁ:D}
+E [(mN —Ean)" (Gy — Py) (zy — Eay)

+ (El’N)T (GN + GN — TN)E.%'N}
+ E[((-EQ)" Py ((—EQ)|+(B)" ToEC.  (39)

Gy —Py>0

Therefore
J(Gu) > E[(¢ - EQTR(¢ — EQ)] + (EQ)TTEC > —oc.

(ii)=-(i). Similar to (39), we can complete the square to
derive the optimal control (27). Due to space limitations,
the detailed proof is omitted here and we can refer to
[34, Theorem 4.3]. Clearly, {(—W, Hy, W, H), — W] Hy), k €
T} is a closed-loop optimal strategy.

(i))=>(v). The proof is also by completing the square.

(v)=-(iv). This is clear.

(iv)=(ii). This has
[34, Theorem 4.3].

The property (28) follows naturally. This completes the
proof. g

Remark 2.2: In Remark 2.1, we have compared the open-
loop optimal control with the closed-loop optimal strategy. By
Theorem 2.2, we know that the existence of the closed-loop
optimal strategy is equivalent to that for all £ € T and all A €
LZ(t;R™), Problem (MF-LQ); admits an open-loop optimal
control. In [34], (ii), (iv), and (v) are shown to be equivalent by
using a modified recursive method. In addition, the equivalent
characterization (via MF-FBSDE) of the existence of the open-
loop optimal control with a given initial state is not presented
in [34]. Furthermore, the open-loop optimal control and the
closed-loop optimal strategy are not clarified in [34]. Hence,
Theorem 2.2 of this paper is deeper and more general than
[34, Theorem 4.3].

been founded in the proof of

III. INDEFINITE MEAN-FIELD STOCHASTIC LQ OPTIMAL
CONTROL OVER AN INFINITE HORIZON

In this section, an indefinite mean-field LQ optimal control
problem over an infinite time horizon is studied. Specifically,
introduce

Tht1 = (A(L’k + AE(L’]C + Buy + BEuk)
+ (Cxy 4+ CExy + Duy, + DEug)wy
ke{0,1,2,...}

(40)

xO:Ca
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J(Gu) =Y E [2f Qup + (Exy)" QExy + 2] Luy,
k=0

+2(Ezy,) " LEuy, + uj Ruy, + (Euy,)" REuy] . (41)

Let T = {0,1,2,...}, and L2(T;%) be the set of -valued
processes v = {vy, k € T} such that vy, is Fj_1-measurable
and >3 E|vx|?> < oc. Introduce the admissible control set

Uog = {u }u € LE(T;R™) and z(-; ¢, u) € L%('ﬁ‘;R”)}

where x(-;¢,u) denotes the state of (40) with the initial
state ¢ and the control u. In what follows, the system equa-
tion (40) is denoted by [A, A, B, B; C, C, D, D). Furthermore,
[A, A; C,C] denotes [A, A,0,0;C, C,0,0], and [A; C] denotes
[A,0,0,0;C,0,0,0]. Let X, in this section, denote the space
of all R™-valued square-integrable random variables, endowed

withanorm || - ||: ||z]| = VEzTz forany z € X.
Problem (MF-LQI). For any ¢ € X, find a u* € U,q such
that

J(Cu) = inf J(C u).

UEULq

(42)

Related to the open-loop optimal control of the finite-horizon
problem, in the infinite-horizon case we might investigate the
conditions on the existence of the optimal control for a fixed
initial state. However, until now there are two difficulties that
we need to overcome. The first one is about the finiteness
of J(¢;u) and the stability of [A, A; C, C] with respect to a
fixed initial state ¢. To study Problem (MF-LQI), the finiteness
of J(¢;u) is necessary, which corresponds to some set of
admissible controls. While for a fixed initial state, it is hard to
characterize the admissible control set for the infinite-horizon
LQ problems. Furthermore, it is also hard to characterize the
fact that [A, A; C, C] is stable from a given initial state. The
second difficulty is about the stability of the solution of the
(discrete-time) linear MF-BSDEs and MF-FBSDEs. In [35]
and [37], the continuous-time linear BSDEs over an infinite
horizon (without mean-field terms) are intensively studied. To
our knowledge, it is not easy to study the stability of the infinite-
horizon version of (9). Unlike the Brownian motion that drives
the continuous-time FBSDEs, the noise {wy} in this paper
is assumed to be any martingale difference with property (2).
Generally speaking, for the process {vy = Ef:o w;} we do
not have the so-called martingale characterization, as that of
the Brownian motion. Hence, in this paper we do not touch
the infinite-horizon MF-FBSDEs. Upon the above two points,
in this section we study the optimal control problem which
involves all the possible initial state in X. Clearly, v* satisfying
(42) is an open-loop optimal control, which is shown in the
following to be a closed-loop one. Furthermore, it is shown in
this case that the GAREs play a fundamental role in studying
the optimal value and the optimal control.

A. L2-Stability

Definition 3.1: System [A, A;C,C] is said to be L2-
exponentially stable from X, L2-globally summable from X,



NI et al.: INDEFINITE MEAN-FIELD STOCHASTIC LQ OPTIMAL CONTROL

L?-asymptotically stable from X, if for any ( € X the solution
of (40) satisfies, respectively

lim e*E|zg|[*> =0, forsome A > 0
k—o00

oo
Z El|zi)? < oo
k=0

lim E|zx|? = 0.
k—o00

By Theorem 2.1 and Theorem 2.7 of [33], we have the
following results.
Theorem 3.1: The following statements are equivalent:
(i) System [A, A; C, (] is L*-exponentially stable from X
(i) System [A, A;C,C]is L?-globally summable from X'.
(iii) System [A, A;C,C]is L2-asymptotically stable from X'
(iv) Forany Y,Y +Y > 0, the Lyapunov equations
X=(A+A)TX(A+A)+(C+O)VTX(C+C)+Y+Y
X=ATXA+C"XC+Y

admit solution (X, X + X) with X, X + X > 0.
(v) There exist Y,Y +Y > 0, the discrete-time Lyapunov

equations
X=A+ATXA+A)+(C+O)TX(C+0C)
+Y+Y

X=ATXA+CTXC+Y

admit solution (X, X + X) with X, X + X > 0.
(vi) [A;C]is L?-stable from X, and A + A is stable.

Remark 3.1: In what follows, the L2-exponentially stable
from X, L2-globally summable from X, L2-asymptotically
stable from X’ are all called L2-stable from X'.

Definition 3.2: System [A, A, B, B; C,C, D, D] is said to be
open-loop L2-stabilizable from X if for any £ € X, there exists
u € L2(T;R™) such that the solution z(-;&,u) of (40) is in
LQF(’E‘; R™). We then call such u an open-loop stabilizer.

Definition 3.3: System [A, A, B, B; C,C, D, D] is called to
be closed-loop L2-stabilizable from X if there exists a pair
(K, K) € R™*" x R™*™ such that for any z € X, the closed-

loop system
Tp41=[(A+BK)zp+(A+(B+B)K — BK)Exy)
+ [(C+ DK)x + (C+ (D+ D)K “3)
—DK) Exy,| wy,

Jﬁozg,kelﬁf

is L2-stable from X. In this case, we call that (K, K) or {u), =
KExzy, + K(zxExy), k € T} is stabilizing or a closed-loop
L?-stabilizer from X.

Proposition 3.1: The following statements are equivalent.

() [A,A,B,B;C,C,D, D] is open-loop L2-stabilizable
from X.

(i) [A,A,B,B;C,C,D, D] is closed-loop L?-stabilizable
from X.

Remark 3.2: This result can be found in [33]. The main
technique to prove above result is to construct a definite mean-
field LQ problem with all the weighting matrices being positive
definite. For such an LQ problem and under the open-loop
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L2-stabilizability of [A, A, B, B; C, C, D, D], the optimal con-
trol is closed-loop and the optimal system is L2-stable. This
means that the optimal control of this definite LQ problem is
a closed-loop L2-stabilizer from X. Furthermore, it is worth
mentioning that the open-loop stabilizability from A’ is a global
property. This is because in Definition 3.2 the referred property
holds for all the elements in X'.

For simplicity, the closed-loop L?-stabilizability from X and
the open-loop L2-stabilizability from X are both called the
L?2-stabilizability from X. Throughout this section, we pose the
following assumption.

(A)[A, A, B,B;C,C, D, D] is L?-stabilizable from X.

B. The GAREs

Let
M={(P.1) = (PTIT)APT) = 0,(P) 2 0} (44

where

J(P,T) HY(PT)
HPT) (P, T) W(PT) 45)
H@%_J@) HT(P)
H(P)  W(P)
with
JPT)=Q+Q+ (C+C)'P(C+C)
+(A+ADTTA+A) -T
H(P,T)= (B+ B)TT(A+ A)
+(D+D)TP(C+C)+ LT + LT
W(P,T)=R+ R+ (D+ D)"P(D+ D) (46)

+(B+ B)TT(B + B)
J(P)=Q+ ATPA+CTPC - P
H(P)=BT"PA+DTPC+ LT
W(P)=R+ BT"PB+ DTPD.

The following theorem shows the convergence of the solution
of the GDREs (20). .

Theorem 3.2: If /\/l~7'é 0, then fgr any terminal con-
dition Py = P,Tx =T with (P,T) € M, the solution
{(Px,T)),—00 <k < N} of the time-invariant version of
GDREs (20) exists and is bounded. Moreover, P, and T}
are monotonically nondecreasing as k decreases, and (Py, T%)
converges to a solution (P, T") of the following GAREs:

P=Q+ATPA+CTPC - HTW'H
T=Q+Q+(C+C)'P(C+0O)

+A+ADTT(A+ A) - HTWH (47)
W,W>0WW'H—-H=0
WWI'H - H=0
with
W =R+ BTPB+DTPD
H=BT"PA+DTPC+ LT
W =R+ R+ (B+ B)'T(B+ B) 48)

+(D+ D)'P(D + D)
H=(B+B)IT(A+ A+ (D+ D)TP(C+C)
+ LT+ LT,
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Proof: For (]5,%) € M, introduce the following cost
functional:

Tp 2l0.Cu) ZE{[EQ”] A(P.T) |gr]

ap — Bay] " x, — Ex

& — Ly, Sy | Tk — BTk

+ |:Uk - Euk] H(P) [uk - Euk} } - 49
By Corollary 2.2, we know that infcy,, J5 (1, ¢, u) >0 >

—oo for any (I,(). Furthermore, the corresponding value
function is

with z; = (. Here, (U., V) is the solution of the time-invariant
version of (37), which is denoted as (Uy, v, Vi, ~) to emphasize
the dependence on N. As ¢ (= a;) is arbitrarily selected, by
(50) we have that for l; < Iy

Uy, v 22Uy, N, Viu,n 2V, N

[(21—Ex))" Uy (2, —Ex;)| + (Eay) " ViEz;  (50)

(51)
Due to the time invariance, we have U;y = Up n—1, Vi,n =

Vo,n-1. Now, for any given 29 = ¢ € A and any stabilizing
control uy, = KExy, + K (21, —Exy, ), we have from (49) and (50)

E [({Eo — E(Eo)TUO’N,l({EO — E{Eo)] + (E(E())TV()’N,lE{EO
Exp 17 Ex
= ZE{ [KEyIZk] H(P.T) [KE;ZJ
T — T = i — Ex
< cZE|xk|2
k=0

where ¢ > 0 is a constant and independent of N and [. By
selecting xyp € R", we have for any IV, {

(52)

Vo n 1m0 < 00 (53)

On the other hand, let xg = {e with ¢ € R", and P(e = —1) =
P(e = 1) = (1/2). For this zg, from (52) we have

E [({Eo — E:L’o)TUl’N({EO — E:L’o)} = fTUO’N,lf < 0. (54)
This together with (51), (53), and (54), gives

lim Ul,N = lim UO_N_l =U
l——00 N—l—00 ’

lim Viy= lim Vyy =V
l—»—oc0 N—l—00

and U , V are bounded.~Letting l — —00, we have the
GAREs. Let P, = U + P, T, = Vi, +T. Then, Py and T}
are monotonically nondecreasing as k increases, and (P, T})
converges to (P,T) with (P,T) being a solution of the

GARE:s (47). O
We now introduce several notions about the solution of the
GAREs (47).

Definition 3.4: A solution of the GAREs (47) is called the
maximal solution, denoted by (P*,T*), if for any solution
(P,T) of the GAREs (47), P* > P,T* > T hold.
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Definition 3.5: A solution (P, T') of the GAREs (47) is called
a stabilizing solution if the control

Up = —V_VTHEJ% — WTH(J?k — Exk),k S if

stabilizes (40) in the L? sense, where, W, H ,W, and H are
given in (48).

Definition 3.6: A solution (P, T') of the GAREs (47) is called
a semi-stabilizing solution if under

up = —WHHEz, — Wi H(2), —Bay), keT  (55)
the spectral radius p(Lx ) < 1.
The operation L j in Definition 3.6 is defined as
Ly (M) = (A1 + B1K1)" M(A; + B1K))
+(C1 + D1 K1)TM(C, + D1K,)
+ (Co + Dy K1) M(Co + Do Ky) (56)
for M € R27%2" where
A+A 0 _(B+B 0
n ( A> - ("7 3)
(0 0
—\0 C
0 0 0
- (C+C ) D1 = (0 D)
_ 0
“\D+D '
Let
T 0\ a ..
P= <0 P> = diag{T, P}.
Then, from the GAREs (47), P satisfies
P=Q+ ATPA; + CTPC; + CTPC, — HTWTH
W>0, WWH-H=0
57
where 57)
W =R+ BI'PB; + DIPD, + DIPD, (58)
H = B{PA, + DTPC, + DIPC, + LT

with
_(R+R 0 _(Q+Q 0
("0 R)e- (%07 9)
_(L+L 0
L= ( 0 L) '
By resorting to the GARE (57), we could easily establish the
existence of the maximal solution of the GAREs (47).
Lemma 3.1: Assume that the GAREs (47) and the GARE

(57) admit the maximal solutions and the stabilizing solutions.
Then the following statements hold.

(i) P* = diag{T™, P*} is the maximal solution of the GARE
(57) if and only if (P*,T*) is the maximal solution of the
GARE:s (47).

(ii) P = diag{T, P} is a stabilizing solution of the GARE
(57) if and only if (P, T) is a stabilizing solution of the
GAREs (47).
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Proof: (i) is clear. For (ii), we have from (58) that
ViH 0
tor (W
WIHH = ( 0 WiH ) )
Hence, from [33, Lemma 5.1], —-W'H is a stabilizing feedback
gain of the following system:

(Aray + Biog) + (Crag + Divg) g
+(Coay, + Davy)0
keT

Qg1 =

Qg =G,

with 1 = {pg,k € T} and 0 = {6,k € T} being two mu-
tually independently martingale difference sequences with
properties similar to (2) if and only if {u; = —W'HEz), —
WTH (zy — Exy), ke T} is a stabilizing control of (40).
Therefore, (ii) follows. U

Recalling that H (P, T) and H(P) are given in (45), we now
define

H(P) = Q+ ATPA, + CTPCy + CIPCy HT:|

H W

where H and W are given in (58). .
Lemma 3.2: H(P) >0 if and only if H(P,T) >0 and
H(P) > 0.
Proof:  For any y = [y{ y3 y3 y1]"
y1,Y3 € R™ and y2, y4 € R™, we have
y"H(P)y = yi J(P,T)yr+yi H" (P, T)ys+ y3 H(P,T)y,
+ys W(P,T)ys +y3 J(P)y2 +y3 H" (P)ya

+ys H(P)y2 + yi W(P)ys

T
- w2 ] o ]
Y3 Y3 Ya Y4
Therefore, the conclusion follows. O

Lemma 3.3: If M # @ and (A) are satisfied, then the follow-
ing statements hold.

€ R2(n+m)  with

(i) The GARE (57) admits the maximal solution P*, which
is a semi-stabilizing solution.

(ii) A stabilizing solution of the GARE (57) is the maximal
solution.

Proof: From Lemma 3.2, we have
M={(p1)= (PT,TT)‘H(IP) >0}

Then we could resort to the methods in[5] and [6], of [1, Section
6.8 ], and [18, Theorem 5.3.1] to prove the conclusions. Due to
space limitations, we omit the proof here. O
Proposition 3.2: If M # @ and (A) are satisfied, then the
following statements hold.
(i) The GAREs (47) admit the maximal solution and at most
a stabilizing solution.
(ii) If M has a nonempty interior (P,T) in the sense that
H(P,T) > 0,H(P) > 0, then the GAREs (47) admit a
stabilizing solution.

Proof: (i) follows from Lemma 3.1 and Lemma 3.3.
(ii) follows from the method to prove [5, Theorem 4.3]. [l
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C. Mean-Field Stochastic LQ Optimal Control Over an
Infinite Horizon

In this section, we shall show that the optimal value of
Problem (MF-LQI) can be expressed via the maximal solution
of the GAREs.

Theorem 3.3: If M # @ and (A) are satisfied, then the
following statements hold.

(i) Problem (MF-LQI) is well-posed and the optimal value
V(xg) is given by E[(x¢ — Exo)T P*(20 — Exo)] +
(EJ)Q)TT*EJ)Q.

(i1) If the optimal control of Problem (MF-LQI) exists, then
an optimal control is

—WH (2, —Bay) - W H Bz, keT (59)
where W*, H*, W* and H* are those in (48) with (P, T')
replaced by (P*,T™).
Proof: (i). Similar to the proof of (39), by completing the
squares we have that for any v € Uyq
J(C,u)
=Y E|(ek—Eap)" (@ + ATP' A+ CTPC — P*
k=0
— H'TW* T H*) (2}, — Exy,)
+ (ug — Bug, + WH (2, — Bay))" W*
(up, — Bug + WHH* (2, — Eay,))
+ (Euk—i—W*TI:I*Exk)TW* (Euk +W*TH*E$]€)
+ (Exx)"(Q+Q+ (C+O)TPH(C+0)
+ (A+[1)TT*(A+[1)—T—EI*TW**H’*)Exk]
+E [(zo — Exo)" P*(z0 — Exo)] + (Exzo) " T"Exg
— lim E [(zy — Ezn)" P*(zn — Ezy)]
N—o0
— lim (Ezn) ' T*Exy
N—o0
=K [(a:o — Ea¢)? P* (2o — Exo)} + (Ex) T T*Exq

+ D [(u — B+ WHH 5y — Bay))” W

. (uk — Euy, + W*TH*(J?k — El‘k))
+ (Euy + W*Tﬁ*Exk)TW*

x (Buy, + W1 I?*Exk)} . (60)

Noting that W*, TW* > 0, we have
J(¢,u) > E [(xo — Exo)T P*(z0 — Eao)] + (Exo) T T*Eay.
Hence
V(zo) = inf J(zo,u)
UEUqq
> E [(wo — Exo)" P*(z0 — Exg)] + (Exo)" T*Ex.
(61)

We now prove that the converse of (61) holds. For a
positive decreasing sequence {Ez,l =0,1,2,...}, we intro-
duce the GAREs with Q,Q + Q, R, R replaced by Q +
eil,Q+Q+¢e;I,R+¢e;1, R+ ¢;1, respectively. For each i,
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the corresponding maximal solution of the GAREs is de-
noted as (P.,,T:,), which is the stabilizing solution. We
can see that P, > ---> P, > P, >-.->P,and T, >

Eit+1
2T, 2T, =2 -+ > T. Furthermore, lim; ;o P, = P
and lim; ,» T, = T. For each i, take u, = —W,H;(z) —

Exy) — W, H;Exy,. Then, we get

V(o) <> E[(z)"(Q+eil)ax + (Bax) QEay,
k=0

+ 2(zx) T Luy, + 2(Bay,) T LEug + (ug)”
x(R+ eil)uy, + (Euy)" REuy]
=E [(zo — Exo)" P-, (z0 — Exo)] + (Exo)" T, Exo
(62)

where the equality is from the analysis similar to (60). Let-
ting i — oo in (62) leads to V (xg) < E[(zg — Exo)T P*(zo —
Exg)] + (Ezo)TT*Exzo. This together with (61) leads to
V((Eo) = E[({Eo — E(Eo)TP* ((Eo — E:L’o)] + (E{Eo)TT*E{E().

The proof of (ii) follows from (i) and (60). This completes
the proof. U

In Theorem 3.3, (59) is shown to be an optimal control under
the condition that the optimal control of Problem (MF-LQI)
exists. A question arises naturally: When does the optimal
control of Problem (MF-LQI) exist? Noting (i) of Theorem 3.3,
equivalently, we may ask: Is the maximal solution of the
GARE:s (47) a stabilizing solution? In fact, this question relates
to an open problem raised by [42] of finding an LQ optimal
control using the primal-dual SDP technique. To the best of our
knowledge, this question has not yet been addressed. In what
follows, we shall study some aspects of this open problem.

For M € R?™*27_define an operator

PM(Z) = (Al + BIM)Z(Al 4 BlM)T
2
+ Z [(Cz + DZM)Z(CZ + _Dil\/JI)T7 7 € R2nx2n

i=1
Clearly, I'y is a linear, compact and positive operator defined

on R27*2n 1f M = 0, 'y will be denoted as T, i.e.,

2
I(Z) = AZAT +>_C.zCf.

i=1

(63)

Theorem 3.4: If M # @ and (A) are satisfied, then the
following statements hold.

(i) If 1 is an eigenvalue of T, then the following statements
hold.

a) Let the maximal solution (P*,T*) of the GAREs
(47) with properties W* > 0, W* > 0 be the sta-
bilizing solution. Then any symmetric eigenvector
x of I' corresponding to 1 is Q-observable in the
sense that Qy # 0.

b) If Q,Q+Q >0,R, R+ R>0 and any sym-
metric eigenvector x of I' corresponding to 1 is
Q-observable, then the maximal solution of
GARE:s (47) is the stabilizing solution.
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(ii) Let @Q,Q +Q > 0,R,R+ R > 0. Then the following
statements hold.

a) If 1 is an eigenvalue of I, then the following statements
are equivalent.

i’) The maximal solution of the GAREs (47) is the
stabilizing solution.

ii") Any symmetric eigenvector x of I" corresponding
to 1 is Q-observable.

b) If 1 is not an eigenvalue of I', then the maximal solution
of the GARE:s (47) is the stabilizing solution.

Proof: (i)-a). From Lemma 3.1, we know that the max-
imal solution P* of the GARE (57) is the stabilizing solution
with property W* > 0. Let K* = —W*'H*. Then the GARE
(57) can be rewritten as

2
P =Q+ATP*A + Y CI'P'Ci —KTWK*.  (64)
i=1

Hence, it holds that
P(P) + (KT @ K*T)p(W*)

2
ATe AT +) clecl| o)

=4(Q) +
i=1
where
p(P*) = (P7,...,PT)" e R4
with P, ..., P}, being the columns of P*. Assume x; is a

symmetric eigenvector of I' corresponding to 1, and Qx; = 0.
Then, we have

2
A @ Ay +ZC¢®C¢

i=1

P0x1) o) + 20x) (KT @ K)p(W)

o(x1) = o(x1)

2
AT @ AT+> clect

i=1

=o(x1)" S(P*) + ¢(x1)"(Q).

Hence,
P0a)" (KT @KT)p(W*) = ¢(x1)" 2(Q)
or equivalently,

Tr[Qx:1] = Tr [X%K*TW*K*X% .

As Qx1 = 0 and W* > 0, it holds that K*x; = 0. From this,
we then have

k- (x1) = (A1 + BiK")x1(A; + BiK)T
2
+ Y [(Ci + DiIK)xa (Cs + DK)”
i=1
=I(x1) =xa:
Hence, 1 is an eigenvalue of I';. This contradicts that P* is the
stabilizing solution. Therefore, any symmetric eigenvector x of
T corresponding to 1 is Q-observable.
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(i)-b). Let P* be the maximal solution of (57) and K* =
—W*'H*. Then the GARE (57) can be rewritten as

P* = Q + K*"RK* + (4; + BiK*)TP(A; + B;K*)
2
+) (Ci + DK)TP*(C;i + DiK").
i=1

Hence
$(P*) = $(Q) + (K" @ K')@(R) + A1 (P*)

where

(65)

Ay 2 (A + BiIKY)T ® (41 + BiK")T
2
+) (Ci+ DiK)T & (C; + DK)T.
i=1

Assume now that the maximal solution P* of the GARE (57)
is not the stabilizing solution. Then the spectral radius p(I'k+)
equals to 1, as IP* is a semi-stabilizing solution. Therefore, 1 is
an eigenvalue of 'k~ and there exists a matrix > 0 such that

AL (1) = ¢(n). (66)
Pre-multiplying ()7 in (65), we have
P @) = 2" P(Q) + o' (KT @ KT)@(R)
+¢(m) " Arp(P). (67)
Combining (66) and (67) becomes
0=e(m"2Q) + ¢(n)" (KT @ KT)a(R)
= Tr |Qn + 7K' TRK n} (68)
As Q > 0,R > 0, we then have
Qn=0. (69)

which contradicts the condition that Qn # 0. Therefore, the
maximal solution P* of the GARE (57) is a stabilizing solution.
From Lemma 3.1, the maximal solution of the GAREs (47) is
the stabilizing solution.

(i1). We need only to prove (ii)-b). Suppose that the maximal
solution of the GARE (57) is not the stabilizing solution. By
an analysis similar to above, we have from (68) and the fact
Q,Q+ Q >0,R, R+ R > 0that Ky = 0. Combining the fact
I'k(n) = n, we have

2
n=Tk-(n) = AinAl +>_ CinC"
=1

(70)

Therefore, 1 is an eigenvalue of I', which contradicts the
condition. Hence, the maximal solution of the GARE (57) is the
stabilizing solution. From Lemma 3.1, the maximal solution of
the GAREs (47) is the stabilizing solution. This completes the
proof. (]

IV. EXAMPLES

In this section, we give some numerical experiments about
calculating the maximal solution of the GAREs (47).
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Fig. 1. Curve of E|x,|? with initial state zo = [1 — 20]7.

Example 4.1: The system matrices and the weighting matri-
ces are given as follows:

(2.0 1.0] - [20 1.0 [1.0  0.0]
A= 0.0 2.0 A= {0.0 1.0] B = 0.0 1.0
_ [1.0 0.5] 1.0 0.0] ~ [1.0 0.0]
B= 0.5 1.0 O = {0.5 1.0} ,C'= 0.0 1.0
(1.0 0.0] = 1.0 0.0 (1.0  0.0]
D= 0.0 1.0 D= {0.5 1.0} L= 0.0 1.0
Q= (7.8889  0.8333 0= —3.2525  —6.3210
~10.8333  6.2222| "¢ T |-6.3210  —0.1419
_ 1.0 0.0 -1.0 0.0
L= {0.0 1.0] R = {0.0 —1.0}
_ [-1.0 0.0
k= 0.0 —1.0]'

Clearly, @ >0, R<0, R<0, and Q + Q is indefinite
as the eigenvalues of @ + @ are —0.1766 and 10.8933. By
standard SDP theory [42], the maximal solution (P*,T*) of
the corresponding GARESs can be calculated by the following
optimization problem:

maximize Tr(P)+ Tr(T)
subjectto (P, T) € M.

It is known that the SDP algorithm has a polynomial computa-
tion complexity. Solving above problem gives

. 5 0] .. [5 0
e

Using this maximal solution, we construct the control

U = —W*_lﬁ*Exk — W*_lH*(l‘k — Exy)

2 K*Exy, + K* (2, — Exy), keT (71)
where
se_ [~LTT78 05556
= |-02778  —1.7778
Ko [~16543  —0.3082
T 102501 —1.3344]°

The spectral radius p(L - ) is shown to be 0.9087. Hence,
the maximal solution (P*,T*) is the stabilizing solution. A
curve of E|x|? under the control (71) is shown in Fig. 1.
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Fig. 2. Curve of E|x|? with initial state zo = [—0.1 30]T.

Example 4.2: The system matrices and weighting matrices
are given as follows:

(1.0 05| - 1.0 0.5 (1.0  0.0]
4= 0.0 1.0 A= [0.0 0.5] B = 0.0 1.0
_ [1.0 0.5] 1.0 0.0] ~ [1.0 0.0]
B= 0.5 1.0 ,C'= {0.5 1.0] ,O'= 0.0 1.0
(1.0 0.0] = 1.0 0.0 (1.0 0.0]
D= 0.0 1.0 D= {0.5 1.0] L= 0.0 1.0
Q= [5.3182  0.0000 0= 1.0158 —0.7543
~ [0.0000  5.3182] " T |—0.7543 0.1561
- 1.0 0.0 1.0 0.0] = 1.0 0.0
L= [0.0 1.0} R = {0.0 1.0} R = [0.0 1.0] ‘

Here, Q,Q + @ > 0and R, R + R > 0. We then have that

. [5 0] 5 [5 0
relo =l g
. [-1.0000 —0.2273
K= |—0.2273  —1. 0000] (72)
~. [—1.0123  —0.1285
K= | 0.1199 —0. 8687] (73)

Furthermore, the spectral radius p(Lx~ g+) is shown to be
0.1260. Hence, the maximal solution (P*,T™*) is the stabilizing
solution. A curve of E|x|? under the control (71) [with K* and
K* given in (72) and (73)] is shown in Fig. 2.

Example 4.3: The system matrices are same to those of
Example 4.2, and the weighting matrices are given as follows:

Q= [12.6550  1.0819 0= 3.0980  —1.9252
T L0819 7.2602)° -1.9252  0.9536
1.0 00] - [1.0 0.0
L= {0.0 1.0] L= {0.0 1.0]
(10 00] 5 [-10 0.0
R= | 0.0 —1.0] It = [0.0 —1.0} '
Here, Q,Q + @ > 0 and R, R + R < 0. We then have
. [0 0] 5 [10 0
P*_o 5]’P[0 5}
. [-1.1053  —0.2632
K= |—0.2778 —1.2222] (74)
~. _[-1.0739 —0.1134
K= | 0.1600 —0.9810] ' (73)
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Fig. 3. Curve of E|z|? with initial state 2o = [—5 19]7.

Furthermore, the spectral radius p(Lg ) is shown to be
0.3647. Hence, the maximal solution (P*,T™) is the stabilizing
solution. A curve of E|z|? under the control (71) [with K* and
K* given in (74), (75)] is shown in Fig. 3.

V. CONCLUSION

In this paper, the finite-horizon and the infinite-horizon
mean-field LQ optimal control problems are studied. For the
finite-horizon case, the open-loop optimal control and the
closed-loop optimal strategy are introduced, whose relationship
is carefully investigated. It is shown that the MF-FBSDEs and
the GDREs play important roles in studying these two notions.
In the infinite-horizon case, the maximal solution of the GARESs
is employed to express the optimal value. Furthermore, the
relationship between the maximal solution and the stabilizing
solution is intensively investigated.

Clearly, the coefficients of the system and the cost weighting
matrices are deterministic, which makes it possible for us to
separately deal with the two orthogonal parts of the state and
the control. This in fact plays a fundamental role to derive the
main results of this paper. In the future, we should develop
new methodology to study the mean-field LQ problems with
random parameters. Another class of problems is about the
(discrete-time) MF-BSDESs. On the one hand, the linear MF-
BSDEs over an infinite horizon is really interesting, by which
we can investigate the infinite-horizon mean-field LQ prob-
lems. On the other hand, the nonlinear MF-BSDEs are also
interesting. Furthermore, the discrete-time MF-BSDE studied
in this paper is different from that in [16] and [17], where
the BSDEs are of finite state. Lastly, Problem (MF-LQI) is
a zero-endpoint problem as any admissible control stabilizes
[A, A, B, B;C,C, D, D]. It is reasonable to consider the free-
endpomt problem [27],[39] and to study the set of the solutions
of the GAREs.
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